
LA-UR-19-23481
Approved for public release; distribution is unlimited.

Title: Charliecloud: Unprivileged Containers for High-Performance Computing

Author(s): Jennings, Michael E.

Intended for: Campus Research Computing Consortium (CaRCC) online meeting

Issued: 2019-04-18

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Michael Jennings (@mej0) – mej@lanl.gov
Platforms Team Lead, HPC Systems Group

Los Alamos National Laboratory

Campus Research Computing Consortium
Systems-Facing Track
Zoom Online Meeting

Thursday, 18 April 2019

Unprivileged Containers for
High-Performance Computing

LA-UR-19-XXXXX

Charliecloud

UNCLASSIFIED

Los Alamos National Laboratory

Los Alamos National Laboratory | UNCLASSIFIED 18-Apr-2019 | 3

• Funded primarily by the Department of Energy, we also do extensive work for/with the Departments of
Defense and Homeland Security, the Intelligence Community, et al.

• Our strategy reflects US government priorities including nuclear security, intelligence, defense,
emergency response, nonproliferation, counterterrorism, and more.

• We help to ensure the safety, security, and effectiveness of the US nuclear stockpile.
• Since 1992, the United States no longer performs full-scale testing of nuclear weapons. This has

necessitated continuous, ongoing leadership in large-scale simulation capabilities realized through
investment in high-performance computing.

• Established in 1943 as “Site Y” of the Manhattan Project
• Mission: To solve National Security challenges through

Scientific Excellence
• One of the largest science and technology institutes in the

world, conducting multidisciplinary research in fields such as
national security, space exploration, renewable energy,
medicine, nanotechnology, and supercomputing.

Introduction

LANL High-Performance Computing Division

Los Alamos National Laboratory | UNCLASSIFIED 18-Apr-2019 | 4

• LANL’s history in HPC dates back to the early ’50s.
• Accomplishments include:

• Helped IBM develop Stretch, the 1st transistor-based
supercomputer

• The 1st vector computer, Cray-1, deployed here
• Our CM-5 was #1 on the inaugural Top500 List
• 1st hybrid supercomputer (using IBM POWER and

PlayStation Cell processors), Roadrunner, was also
1st to break the PetaFLOP/s barrier

• Led by Gary Grider, creator of Burst Buffer technology

• We support over 2000
unique users across more
than 100 different
classified/open science
projects on 20+ clusters

LANL has been a leader in HPC since before HPC was HPC!

Introduction

18-Apr-2019 | 6Los Alamos National Laboratory | UNCLASSIFIED

Problem #3: We are finite, as is our time.
• We generally won’t install extra software with low user demand.
• Unique or unusual use cases tend to be lower priority.
• The line between “innovator” and “crackpot” is often rather blurry….
• Particularly in academic/research computing, teams are small with broad

focus and must prioritize among many diverse problems/tasks.

Problem #2: We’re old. And not getting any younger.
• Schools are teaching clusters, “parallel”/scalable/distributed

software development...but usually “embarrassingly parallel” (e.g., map/reduce).
• All the “cool kids” are using Ubuntu (or Arch, or Alpine...), not RHEL.
• Modern Machine Learning and Data Analytics toolsuites are non-trivial.

Problem #1: HPC clusters have narrowly focused software stacks.
• They do serial and parallel-MPI tasks well...but that’s it.
• Compute node images are often in RAM/NFS & kept small.
• Managing multiple OSs, and required expertise, is rare & labor intensive.

Software build combinatorics is among the hardest problems in HPC management!

Mo’ Users, Mo’ Problems!

First World Problems in HPC

18-Apr-2019 | 7Los Alamos National Laboratory | UNCLASSIFIED

User-Defined Software Stacks (UDSS), also known as User-Defined Images (UDI) or Bring-Your-
Own-Environment (BYOE), allow users to supply not only their own applications/source to run on HPC
systems but also the environment – up to and including entire OS images – in which they should run!

Advantages include portability, usability, consistency, time savings…

Potential disadvantages include missing functionality (HSN, accelerators, filesystems), performance
degradation; thus, addressing these should be part of the design of any HPC-focused solution!

In rare, specific cases, certain packages may address this independently
by building static binaries or coupling dependencies with executables:
• Works everywhere with no privileges required
• Requires build-time (and sometimes run-time) support
• May not be feasible in all situations
• For everyone else, we have a few options…

The Solution: Pawn It Off on the Users via UDSS/UDI/BYOE!

This sounds counter to making our customers’ lives easier, but it’s not!

Make It Someone Else’s!

18-Apr-2019 | 8Los Alamos National Laboratory | UNCLASSIFIED

Nope.

Advantages
• Available everywhere immediately
• Requires no privileges
• No additional privacy/security risk
• Direct access to all hardware
• No performance penalty
• Theoretically applies to any open source software library/app/stack

Disadvantages
• It’s the 21st Century; we no longer want to party like it’s 1999!
• Tedious and time-consuming
• Error-prone with exponential propagation of errors/time-to-fix
• Hard to update; start over each time
• No standard workflow/reproducibility
• Provides neither portability nor consistency

Computers are awesome at repetitive, consistent tasks. People…not so much.

The Old-Fashioned Way

Option #1: Compile It Yourself

18-Apr-2019 | 9Los Alamos National Laboratory | UNCLASSIFIED

“There’s GOT to be a
BETTER WAY!!”

Advantages
• Available for most IA32/x64 systems
• Requires no privileges
• No additional privacy/security risk
• Direct access to all hardware
• No performance penalty

Disadvantages
• Frequently still requires building from source (time and space

constraints)
• Varying degrees of HPC support
• Varying degrees of reproducibility, portability, consistency, workflow
• Users/consultants bear entire burden

If You Must…
• Good options include EasyBuild, Lmod, Spack
• Also Anaconda, nixOS

This is the current solution at most HPC & RC centers.

The Slightly Less Old-Fashioned Way

Option #2: Environment Manager

18-Apr-2019 | 10Los Alamos National Laboratory | UNCLASSIFIED

Should HPC become the Cloud?

Advantages
• Ultra-flexible (any kernel/OS/arch)
• Strong-to-complete isolation
• Common use cases perform well

Disadvantages
• Performance suffers for most HPC use cases, often significantly.
• Performance/security tradeoffs (i.e., paravirtualization sacrifices

isolation/security to increase performance)
• Infrastructure can be complex.
• Direct/performant access to hardware may require privileges that

are not easily granted at runtime or with minimal risk.
• Not all “exotic” HPC hardware supported.
• Entire OS must be provisioned and booted.
• Requires separate hostname/IP, separate network configuration,

separate firewall, etc.
• User-supplied VMs often suffer from lack of CM/prescriptiveness.

Someday HPC and Cloud may very well merge…but not today.

The Cloudy Way

Option #3: Virtualization (VMs)

18-Apr-2019 | 11Los Alamos National Laboratory | UNCLASSIFIED

Should HPC use containers?

Advantages
• Enough flexibility (only share kernel)
• Enough isolation (namespaces, etc.)
• Standard, reproducible workflow
• Bare-metal performance (or close)
• Minimal-to-no burden on users or consultants in most cases

(presumes correct solution choice)
• Lightweight, simple, and easy to use (again, presumes correct

solution choice)

Disadvantages
• Require recent Linux kernel/distro (SLES 12SP2, RHEL 7.4,

Ubuntu 16.04, Linux LTS 4.4/4.9) or privilege
• Occasional growing pains due to newness (feature-complete

since 2013, secure since 2015)
• Container expertise in HPC still rare; thus, bad/misleading info

& myths are ubiquitous (even in publications)!

While (arguably) new, containers offer the ideal performance/isolation balance.

Containers for the Win!

Option #4: Containers

18-Apr-2019 | 12Los Alamos National Laboratory | UNCLASSIFIED

Good question! Not everyone agrees.
Here’s our take:

Linux Containers:
• Use one or more kernel namespaces, along with zero

or more additional optional kernel features (e.g.,
cgroups) to provide isolation for (i.e., “contain”) a
process, along with its child processes, if any;

• Provide a false/distorted view of the underlying
system and its available resources;

• Envelope/restrict unprivileged process(es) such that
escape/escalation is “impossible;” and

• Facilitate application security by providing capability
constraints, integrity assurance, and content
validation as required via industry-standard formats
and workflows (for application containers).

Containers are processes that we want to group together and collectively lie to.

Terminology

So...Umm...These Container Things...Like, What Are They?

18-Apr-2019 | 13Los Alamos National Laboratory | UNCLASSIFIED

The Linux Kernel supports 6 namespaces as of version 3.8, 7 as of 4.6.
• 6 Privileged Namespaces (require CAP_SYS_ADMIN to create)

• mount – Private filesystem mount points, recursion/propagation controls
• pid – Private view of process IDs and processes, init semantics
• uts – Private hostname and domainname values
• net – Private network resources (devices, IPs, routes, ports, etc.)
• ipc – Private IPC resources (SysV IPC objects, POSIX msg queues)
• cgroup – Private control group hierarchy (Linux 4.6+ only)

• 1 Unprivileged Namespace (requires no capabilities to create)
• user – Private UID and GID mappings

• Can be combined with other namespaces, even if unprivileged
• System Call API: unshare(2), clone(2), setns(2)

Further reading: “Namespaces in Operation” (https://lwn.net/Articles/531114/)

Namespaces are the ways in which the kernel empowers us to lie about our host.

Lies, Damned Lies, and Containers

Namespaces, You Say?

https://lwn.net/Articles/531114/

18-Apr-2019 | 14Los Alamos National Laboratory | UNCLASSIFIED

The Linux kernel has several additional subsystems that containers sometimes use:
• cgroups – Control hierarchical resource management and usage constraints

• Latest kernels (4.6+) even have namespaces for this!
• Schedulers/RMs use to track/control job resource utilization

• seccomp-bpf – Berkeley Packet Filter-based syscall filtering
• Frequently used to prevent containers from exceeding their scope

• prctl(*_NO_NEW_PRIVS) – Prevent privilege escalation
• Kernel-level flag that prevents execve() granting privileges.
• Persists across all calls to fork(), clone(), and execve()
• Privileged containerization is unsafe without this.

• SELinux – MLS/MAC Labeling system for files/processes
• Allows admins precise control over actions, roles of applications

• AppArmor – Profile-based MAC system for limiting apps’ abilities
• Similar to SELinux but without filesystem labeling features

These features help us protect the lies, enforce the lies, and insulate the liars!

Protecting the Lies

Additional (Optional) Container Elements

18-Apr-2019 | 15Los Alamos National Laboratory | UNCLASSIFIED

Lightweight Container Systems
▪ Generally only provide runtime; most leverage

Docker/OCI/K8s ecosystem

▪ Tend to require existing directory tree (i.e.,
flattened image) to run in

▪ Examples: RunC, CCon, NsJail, unshare(1),
systemd-nspawn(1), SARUS

▪ …and of course, Charliecloud!

Full-featured Container Systems
▪ Support building, distribution, validation, and

execution

▪ Provide for complete handling of containers
throughout lifecycle

▪ Examples: Docker, CRI-O, LXC/LXD

▪ Most modern container engines now implement Open
Container Initiative (OCI) Image and/or Runtime
Spec(s)

▪ Building containers is still a per-system function. OCI
does NOT “do” building!

• Dockerfiles are the de facto standard; robust,
capable DSL

• CoreOS Rocket supplied acbuild based around
traditional shell-fu

• ProjectAtomic’s buildah supports both!

The Container Landscape

18-Apr-2019 | 16Los Alamos National Laboratory | UNCLASSIFIED

All container solutions expose (formerly) privileged operations to
unprivileged users, requiring us to accept a new security boundary.
So which one would you choose?
• one that’s new and known to be flawed?
• a well-understood one that still relies on setuid-root binaries?
• the one that provides all relevant information to the kernel regarding

identity and separation of privilege?

Modern Cybersecurity requires many layers; true security isn’t merely the absence of access but
rather the presence of protection!
• Prior to invocation, container security relies on a wide variety of content provenance and assurance methodologies

(e.g., non-repudiation, CAS) to guarantee end-to-end data integrity and transport security.
• At runtime, container security relies entirely on the separation of authorities/roles within the Linux kernel (e.g.,

seccomp, MLS). If the kernel fails, the container fails.
• Lightweight container solutions have the advantage of leaving much of that to others.
• Most mindshare is in Linux kernel hardening and native unprivileged containers.

There’s “Secure,” and there’s “Not Exactly.” Make sure you choose the right one!

Container Security

Let’s Talk Security

18-Apr-2019 | 17Los Alamos National Laboratory | UNCLASSIFIED

• LANL’s Container Runtime
• Available on GitHub: https://github.com/hpc/charliecloud

• 2018 R&D 100 Winner!

• Recent developments in version 0.9.x (currently 0.9.9):
• New Vagrantfile for generating Charliecloud-enabled (and Docker-enabled)

VM images based on CentOS 7 Virtualbox image.
• New example containers and tutorials based on MPICH, Spack, spokeo,

umoci, OpenMPI 3.1.3, and more.
• New ch-fromhost utility to seamlessly integrate host-based resources into

Charliecloud containers (HSN, GPU, libraries, etc.)
• Improved spec file for potential future inclusion in upstream distros.
• Significantly improved documentation (also fixed building of documentation on

RHEL-based platforms)

Charliecloud is LANL’s fully unprivileged, user-installable container suite

Our Recommended Solution

Charliecloud

https://github.com/hpc/charliecloud

18-Apr-2019 | 18Los Alamos National Laboratory | UNCLASSIFIED

• Docker/Moby aren’t (yet?) a good fit for HPC:
• Performance - OverlayFS is slooooooow due to layering!
• Integrity - File removal is done by “whiting out” which causes subtle issues.
• Associativity - Docker containers are children of daemon, not CLI.

• NERSC’s Shifter offers appealing user experience but has overhead
• User downloads container(s) from Docker Hub, submits jobs to run in them.
• Admin must set up & maintain Image Gateway.
• Relies primarily on chroot(); requires privilege.

• Small/simple APIs should yield small/simple code!
• Charliecloud weighs in at just over 1000 LoC.
• Compare to NSJail (4,000), Shifter (19,000),

Singularity (15,000), and Docker (160,000)!
• Charliecloud’s security boundary is the kernel

• Also worth watching: Moby, Rootless RunC, CRI-O/podman, Rootless Docker

Choosy Users Choose userns!

Why Charliecloud?

18-Apr-2019 | 19Los Alamos National Laboratory | UNCLASSIFIED

$ ch-tar2dir /var/tmp/hello.tar.gz /var/tmp/hello

creating new image /var/tmp/hello

/var/tmp/hello unpacked ok

$ ch-run /var/tmp/hello -- cat /etc/debian_version

8.9

$ cd ~/charliecloud/examples/serial/hello

$ ls

Dockerfile hello.sh README test.bats

$ ch-build -t hello ~/charliecloud

Sending build context to Docker daemon 15.19 MB

[...]

Successfully built 30662b3f94f3

$ ch-docker2tar hello /var/tmp

57M /var/tmp/hello.tar.gz

Charliecloud Demo/Walkthrough

18-Apr-2019 | 20Los Alamos National Laboratory | UNCLASSIFIED

• Supercomputing 2017 Paper by Reid Priedhorsky and Tim Randles
• “Charliecloud: Unprivileged Containers for UDSS in HPC”
• Los Alamos Tech Report LA-UR-17-30438
• http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-30438

• ;login: Article “Linux Containers for Fun & Profit in HPC”
by Reid Priedhorsky
• https://www.usenix.org/publications/login/fall2017/priedhorsky

• Documentation: https://hpc.github.io/charliecloud (includes tutorials!)
• Source Code: https://github.com/hpc/charliecloud
• Mailing List: charliecloud@groups.io || https://groups.io/charliecloud
• Contact Reid (reidpr@lanl.gov), Tim (trandles@lanl.gov),

or Michael (mej@lanl.gov, @mej0 on Twitter)

Try it out, and let us know what you think! Admins, devs, and users welcome!

For More Information…

Charliecloud Resources

http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-30438
https://www.usenix.org/publications/login/fall2017/priedhorsky
https://hpc.github.io/charliecloud
https://github.com/hpc/charliecloud
mailto:charliecloud@groups.io
https://groups.io/charliecloud
mailto:reidpr@lanl.gov
mailto:trandles@lanl.gov
mailto:mej@lanl.gov
https://twitter.com/mej0

Any Questions?

18-Apr-2019 | 21Los Alamos National Laboratory | UNCLASSIFIED

Michael Jennings
Los Alamos National Lab

mej@lanl.gov || mej@eterm.org
f/kainx || t/@mej0 || i/kainx || m/@mej0

	Slide Number 1
	Slide Number 2
	Los Alamos National Laboratory
	LANL High-Performance Computing Division
	First World Problems in HPC
	The Solution: Pawn It Off on the Users via UDSS/UDI/BYOE!
	Option #1: Compile It Yourself
	Option #2: Environment Manager
	Option #3: Virtualization (VMs)
	Option #4: Containers
	So...Umm...These Container Things...Like, What Are They?
	Namespaces, You Say?
	Additional (Optional) Container Elements
	The Container Landscape
	Let’s Talk Security
	Charliecloud
	Why Charliecloud?
	Charliecloud Demo/Walkthrough
	Charliecloud Resources
	Any Questions?

